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1 Introduction

The bottom quark occupies a rather special place in our understanding of the
fundamental fermions that are the constituents of matter: on the one hand,
its mass (of the order of 5 GeV/c2 [1]) is substantially larger than that of the
(next heaviest) charm quark. On the other hand, it is sufficiently light to be
produced copiously at high energy colliders.

In particular, unlike the top quark, the bottom quark is lighter than the W bo-
son, preventing decays to on-shell W bosons. As a result, it lives long enough
for hadronization to occur before its decay. The average lifetime of b-flavored
hadrons (referred to as B hadrons in the following) has been measured to be
about 1.5 ps [1]: this is sufficiently long for B hadrons, even for moderate
momenta, to travel distances of the order of at least a mm. Combined with
the relatively large mass of B hadrons, the use of precise tracking information
therefore allows to detect the presence of B hadrons through their charged
decay products. In addition, B hadron decays often lead to the production
of high momentum leptons: especially in the QCD dominated final states at
hadron colliders, the observation of such leptons provides easy access to sam-
ples with enhanced b-jet content. The identification of jets originating from the
hadronization of bottom quarks (referred to as b-jet identification or b-tagging
in the following) in the DØ experiment is the subject of this publication.

1.1 The upgraded DØ detector

The DØ experiment is one of the two experiments operating at the Tevatron
pp̄ Collider at Fermilab. After a successful Tevatron Run I, which led to the
discovery of the top quark [2], the Tevatron was upgraded to provide both
a higher center-of-mass energy (from 1.8 TeV to 1.96 TeV) and a significant
increase in luminosity. Run II started in 2001, and the Tevatron has delivered
1.2 fb−1 of integrated luminosity to the experiments by March, 2006, at which
time another luminosity upgrade was commissioned. This publication refers
to the Run II data taken before March, 2006.

To cope with the increased luminosity and decreased bunch spacing (from
3.6 µs to 396 ns), also the DØ detector underwent a significant upgrade; the
upgraded detector is described in detail elsewhere [3]. In particular, a 2T cen-
tral solenoid was installed to provide an axial magnetic field used to measure
the momentum of charged particles. Correspondingly, the existing tracking
detectors were removed and replaced with two new detectors:

• the Central Fiber Tracker (CFT), consisting of about 77,000 axial and small-
angle stereo scintillating fibers arranged in eight concentric layers;
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• and the Silicon Microstrip Tracker (SMT), a detector featuring 912 sili-
con strip sensor modules arranged in six barrel and 16 disk structures. Of
particular interest is the innermost layer of SMT barrel ladders: its prox-
imity to the beam line (at a radius of 2.6 cm) results in a relatively small
extrapolation to the beam line, and hence in good vertex reconstruction
capabilities.

The ability to identify efficiently the b-quarks 4 in an event considerably broad-
ens the range of physics issues that can be addressed by the DØ experiment in
Run II. While the analysis leading to the observation of the top quark by DØ
in Run I could employ only semimuonic decays b → µν̄µX, the use of lifetime
tagging allows for a more precise determination of the top quark properties (see
e.g. [4]). Evidence for the production of top quarks through electroweak pro-
duction processes has not yet been established, but upper limits constraining
the cross sections for these processes approach their predictions made by the
standard model (SM) of particle physics. The search for the SM Higgs boson
also benefits from b-jet identification: a relatively light (mH . 135 GeV/c2)
Higgs boson will decay predominantly to bb̄ quark pairs. Finally, many the-
oretical models invoking supersymmetry exhibit a strongly enhanced cross
section for the production of final states containing b-quarks.

This article is subdivided as follows. Section 2 describes the objects that serve
as input to the b-tagging algorithms. Section 3 introduces clean-up criteria
applied before the tagging proper. Sections 4, 5, and 6 describe the basic
ways in which lifetime-correlated variables are extracted. Section 7 combines
these variables in an artificial neural network to obtain an optimal tagging
performance. Finally, Sections 8 and 9 detail how collider data are used to
calibrate the performance of the resulting tagging algorithm.

4 In this article, charge conjugated states are implied as well.
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2 Object reconstruction

The input for lifetime identification of b quark jets consists of three kinds of
reconstructed objects.

• Charged particle tracks, which are reconstructed from hits in the CFT and
SMT tracking detectors.

• Primary and secondary vertices, which are built from two or more charged
particle tracks that originate from a common point in space.

• Hadron jets, which are reconstructed primarily by their energy deposition
in the calorimeter.

2.1 Charged particle tracking

Tracks are reconstructed using the CFT and SMT detectors. A diagram of the
tracking detectors is shown in Fig. 1

Fig. 1. Central Tracking Detectors.

In the DØ experiment, tracks are found by two independent algorithms, which
are then combined, filtered, and refit. The two track-finding algorithms are
called HTF (histogramming track finder) and AA (alternative algorithm). The
HTF algorithm is based on a histogramming techique. The AA algorithm uses
a road-following (Kalman Filter [5]) technique starting from seed tracks. The
two algorithms are described in more detail below.

2.1.1 HTF Track Finding Algorithm

A general track is characterized by five track parameters, which in DØ are
conventionally chosen to be (d, z, φ, tanλ, ρ), where d is the beam line im-
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pact parameter, z is the axial coordinate at the beam line, φ is the azimuthal
direction, tanλ = dz/dr and ρ is the radius of curvature. Tracks that are pro-
duced by beam particle interactions invariably have small impact parameters
(d ≈ 0), so for the purpose of pattern recognition one can consider that tracks
occupy a four dimensional parameter space. If we restrict attention to the
axial view, the number of relevant track parameters reduces to two, namely,
ρ and φ. Thus, axial tracks can be thought of as points in the (ρ, φ) plane.

Now consider axial hits, which are space points in the (x, y) plane. A sin-
gle axial hit is consistent with a one-parameter family of axial tracks, which
approximately makes a straight line in (ρ, φ) space. The mapping from axial
space point (x, y) to a line in axial track parameter space (ρ, φ) is called a
Hough Transform [6]. The pattern recognition problem then reduces to find-
ing points in track parameter space (axial tracks) where lines corresponding
to several hits intersect.

The pattern recognition problem is solved using a histogram to represent (ρ, φ)
space. Axial hits are then added to the histogram in the roughly line of cells
consistent with that hit. Tracks show up as spikes in the histogram. Cells
containing a number of hits above a minimum threshold are candidate tracks.

Once axial track candiates have been found, stereo information can be added
in the same way. Stereo tracks can be thought of as points in (z, tan λ) space.
Stereo hits are points in (r, z) space that map via a Hough Transform to lines
in (z, tan λ) space.

In practice, track candidates found by histogramming tend to have high com-
binatorial background. Therefore, following each histogramming pass, track
candidates are filtered using a Kalman Filter track fitter.

The full HTF algorithm utilizes two independent passes to maximize efficiency.
In the first pass, tracks are found in the SMT using the histogramming method
described above, then extended into the CFT using a Kalman Filter. In the
second pass, tracks are found in the CFT, then extended into the SMT.

2.1.2 AA Track Finding Algorithm

The AA algorithm differs from the HTF algorithm primarily in the way it
generates seed tracks. Like HTF, AA uses two pattern recognition passes,
SMT to CFT, and CFT to SMT.

In the first pass, seed tracks are constructed using all combinations of three 2D
(axial + stereo) SMT hits that are consistent with a helical trajectory passing
close to the beam line. Seed tracks are then extended to the remainder of the
SMT and the CFT.
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In the second pass, seed tracks are constructed using all combinations of three
2D (axial + stereo) CFT hits. For the second pass, seed tracks are required to
pass close to a primary vertex found using tracks from pass 1 (not just close
to the beam line). Seed tracks are then extended to the remainder of the CFT
and the SMT.

2.1.3 Track Filtering and Fitting

All phases of track reconstruction make extensive use of the Kalman Filter [5]
algorithm for reducing fake tracks and obtaining estimates of track parameters.
A final Kalman Filter track fit is done after HTF and AA pattern recognition
is finished. The final pass differs from earlier passes in that it uses a more
sophisticated model of track propagation that is optimized for accuracy rather
than speed.

All Kalman Filter type tracking algorithms share certain features. The Kalman
Filter requires a partially reconstructed candidate track or seed track based
on a subset of avilable tracking detectors to get started. The candidate track
is propagated to the next detector surface, giving a predicted position and
error on that surface. Hits on the detector surface near the predicted track
can be added to the track to give updated estimates of track parameters,
and an incremental chisquare. Hits that produce too large of an incremental
chisquare are rejected. It can happen that more than one hit, or no hit, is
consistent with the track prediction. Tracks are extended in this way until no
more extension is possible. In addition to being rejected by an incremental
chisquare cut, tracks can be rejected at any step, or after the final step, by
global properties, but especially the total the total number and types of hits
and misses. As a final step, tracks that share too many hits are filtered.

It would scarcely be possible to enumerate all cuts used in track reconstruction
due to high complexity. However, here is a partial list of cuts that is used in
DØtrack reconstruction.

List tracking cuts.

2.1.4 Tracking Acceptance and Performance

2.2 Primary vertex reconstruction

The reconstruction and identification of the primary vertex at DØ consists
of the following steps: (i) track selection; (ii) vertex fitting by means of an
adaptive algorithm; and (iii) primary vertex selection.
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In the first stage, tracks are selected if they have pT > 0.5 GeV and two or
more hits in the silicon detector if the track is within the geometric acceptance
of the silicon detector as measured in the (η, z) plane. The selected tracks are
then clustered along the z-direction in 2 cm regions to separate groups of
tracks coming from different interactions.

The second stage involves the fitting of tracks to a vertex on each of the z clus-
ters obtained before. This is done in two passes. In the first pass, the location
and width of the beam in the transverse plane of each event is determined by
fitting the selected tracks in each cluster to a common vertex. A Kalman Filter
vertex fitter is used for this step where tracks with the highest χ2 contribu-
tion to the vertex are removed in turn, until the total vertex χ2 per degree of
freedom is smaller than 10. In the second pass, we refine the track selection in
each z cluster by keeping only those tracks whose distance of closest approach
(d) significance to the beam spot location is less than 5. To determine the
d/σd value of each track, the beam spot location and its error as determined
in the first pass is used. Thus the resolution of the beam spot determination
in the first pass is included in the second pass. Once the outliers with respect
to the beam position have been removed from the selected tracks, an adaptive
vertex algorithm [7] is used to fit the selected tracks into a common vertex in
each cluster.

The adaptive algorithm is specially suited to reduce the contribution of distant
tracks to the vertex fit, thus obtaining a better separation between primary
and secondary vertices. This algorithm is an improvement over the Kalman
Filter vertex fitter in that all tracks are allowed to contribute to the final ver-
tex fit instead of rejecting those tracks whose χ2 contribution to the vertex
fit is larger than some value. In this algorithm, each track is given a weight
depending on its χ2 contribution to the fitted vertex, and this is done itera-
tively.

The final and third step consists on selecting which of the fitted vertices in all
z clusters is the result of the hard scatter interaction. The hard scatter vertex
is distinguished from other soft-interaction vertices by the higher average pT

of its tracks. We form a probability function for each vertex based on the pT

of tracks originated in minimum bias vertices, and then select the vertex with
the lowest probability.

The reconstruction and identification efficiency in data is between 97 and 100%
for primary vertices reconstructed up to z = 100 cm. For multijet events, the
position resolution of the primary vertex in the transverse plane is around
10 µm and in the longitudinal direction of around 25 µm.

We should also say something about the selection! And some plots
would be welcome.
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2.3 Jet reconstruction and energy calibration

The vast majority of data analyses in DØ make use of so-called cone jets,
which collect all calorimeter energy deposits within a fixed angular distance
R. In particular, the cone jet reconstruction algorithm used within DØ is the
Run II cone jet algorithm [8]. This algorithm is insensitive to the presence of
soft or collinear radiation off partons, thus allowing for detailed comparisons
of jet distributions in the DØ data with theoretical predictions. The cone radii
used in analyses in DØ are R = 0.5 and R = 0.7; but for most high pT physics
only the R = 0.5 cone jets are used, and it is only these jets that are described
in this article.

As the jets are reconstructed on the basis of calorimetric information, for such
comparisons to be possible corrections are applied for various effects:

• energy deposits not from the hard interaction (either from the underlying
event, the remnant of the original pp̄ system, or from additional soft inter-
actions);

• the (energy dependent) calorimeter response to incident high-energy parti-
cles;

• charged particles can be swept into or out of the cone on their path from
the interaction point to the calorimeter.

This topic of the determination of the jet energy scale (JES) is described in
a separate paper [?]. The resulting JES, by itself, does not yet account for
missing neutrinos from decays of b- or c-flavoured hadrons. While such ad-
ditional corrections may be important for physics analyses, b-tagging is only
sensitive to it because the tagging performance obtained in data (Sect. 8) is
parametrized in terms of jet ET (and η) and applied to MC jets. For this pur-
pose, corrections for undetected neutrinos (and for the energy not deposited
in the calorimeter, in the case of muons associated with jets) are not applied.
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3 Preliminaries

3.1 Signal Definition

As indicated in the preceding Section, the b-tagging algorithms used within the
DØ experiment are jet based rather than event based. This choice makes sense
especially for high-luminosity hadron colliders, where pile-up from previous
interactions, as well as multiple interactions in the same bunch crossing, may
lead to other tracks and jets in the event besides those of the “interesting”
high pT interaction.

However, this choice introduces an ambiguity for jets in simulated events. In
order to estimate the performance of a b-tagging algorithm it is first necessary
to specify precisely how a jet’s flavour is determined. The following choice has
been made:

• if at the particle level a B hadron is found within a R = 0.5 radius of the
the jet direction, the jet is considered to be a b jet;

• if no B hadron but a C hadron is found, the jet is considered to be a c jet;
• if no C hadron is found either, the jet is considered to be a light flavour jet.

This choice is preferred over the association with a b or c quark, as in the latter
case, parton showering may lead to a large distance between the original quark
direction and that of the corresponding jet(s).

3.2 Taggability

The tagging algorithms described in the following Sections are based entirely
on tracking and vertexing of charged particles. Therefore, a very basic re-
quirement is that there should be charged particle tracks associated with the
(calorimeter) jet. Rather than incorporating such basic requirements in the
tagging algorithms themselves, they are implemented as a separate step. There
are several advantages to a staged approach:

• as detailed in Section 8, the tagging algorithm’s performance must be eval-
uated on real data. It is parametrized in terms of the jet kinematics (ET

and |η|). This parametrization presupposes that there are no further depen-
dences. However, the interaction region at the DØ detector is quite long,
σz ≈ 25 cm, and the detector acceptance affects the track reconstruction
efficiency dependence on η differently for different values of the interaction
point’s z coordinate;

• some of the reconstructed calorimeter jets result from electronics noise. Al-
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though such fake jets are suppressed by calorimeter-based jet identification
criteria, the association with tracks offers additional discrimination. The
fraction of fake jets is generally small, (quote a number here?) but it de-
pends on the final state under consideration. Decoupling this effect from the
tagging algorithms proper allows to extract a tagging performance which
can be assumed to be universal, i.e., applicable to general final states.

The requirement for a jet to be taggable, i.e., for it to be considered for further
application of the tagging algorithms, is that it should be within a R = 0.5
distance from a so-called track jet. Track jets are reconstructed starting from
tracks having at least one hit in the SMT, a distance to the selected primary
vertex less than 2 mm in the transverse plane and less than 4 mm in the
z direction, and pT > 0.5 GeV/c. Starting with “seed” tracks having pT >
1 GeV/c, the Snowmass Jet algorithm [9] is used to cluster the tracks within
cones of radius R = 0.5. Here I omit the z clustering. Given that the
zdca cut of 4 mm is used, that should be of no importance??

Here should follow some representative plots on taggability.

3.3 V 0 Rejection

By construction, the lifetime tagging algorithms assume that any measur-
able lifetime is indicative of heavy flavour jets. However, also several strange
hadrons (in particular, KS, KL, and Λ, commonly denoted as V 0s) decay
weakly, with lifetimes of tens of ps (or even tens of ns in the case of the KL).
In additions, γ → e+e− conversions may occur in the detector material at
large distances from the beam line.

V 0 candidates are identified through two tracks satisfying the following crite-
ria:

• the significance of the distance of closest approach to the selected primary
vertex in the transverse plane, Sd ≡ d/σd (see Sect. 5) of both tracks must
satisfy |Sd| > 3;

• the tracks’ z coordinates at the point of closest approach in the transverse
plane must be displaced from the primary vertex less than 1 cm, to suppress
misreconstructed tracks;

• the resulting V 0 must have a distance of closest approach to the primary
vertex of less than 200 µm. This requirement is intended to select only
those V 0 candidates originating from the primary vertex, while candidates
originating from heavy flavour decays may be taken into account during the
tagging;

• the reconstructed mass should satisfy 472 MeV/c2 < m < 516 MeV/c2 for
KS candidates, and 1108 MeV/c2 < m < 1122 MeV/c2 for Λ candidates (in
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the latter case, the higher pT track is considered to be a proton; the other
track, or both tracks in the case of KS reconstruction, is assumed to be a
charged pion). The mass peak plots of reconstructed KS and Λ candidates
are shown in Fig. 2.
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Fig. 2. Reconstructed KS and Λ mass peaks.

Photon conversions are most easily recognized by the fact that the opening an-
gle between the electron and positron is negligibly small. In the plane perpen-
dicular to the beam line, this is exploited by requiring that the tracks should
be less than 30 µm apart at the location where their trajectories are parallel
to each other. In addition, they should again be oppositely charged, and their
invariant mass is required to be less than 25 MeV/c2. Since conversions hap-
pen inside material, the location of their vertices reflects the distribution of
material inside the detector, as illustrated by Fig. 3.

R, cm
0 2 4 6 8 10 120

5

10

15

20

25

30

35

40

45

b
ea

m
 p

ip
e

L1
a

L1
b

L2
a

L2
b

All conversions
Conversions with
DCA significance > 2

z, cm
-60 -40 -20 0 20 40 600

50

100

150

200

250

300

350 All conversions
Conversions with
DCA sign. >2

Peaks at F-disks
positions

Fig. 3. Reconstructed radial (left) and z coordinate (right) of the conversion vertex.

It would be very desirable to know (roughly?) the V0 finding effi-
ciency on the MC!
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4 The Secondary Vertex Tag

The most intuitive tagging method is to require explicitly the presence of a
displaced or secondary vertex. The requirement that a number of tracks can
all be extrapolated to the same point in three dimensions is expected to lead
to an algorithm that is robust even in the presence of misreconstructed tracks.

The reconstruction of secondary vertices starts from the track jet associated
with each (taggable) calorimeter jet (see Sect. 3.2). It starts from all tracks
from which that track jet was reconstructed, and first applies additional cri-
teria to those tracks: they should have at least two SMT hits, transverse mo-
menta exceeding 0.5 GeV/c, |dca| < 0.15cm, and |zdca| <0.4cm. All tracks
satisfying these criteria are used in a so-called build-up vertex finding algo-
rithm. In detail, the algorithm consists of the following steps:

(1) vertices are reconstructed from all pairs of tracks using a Kalman vertex
fitting technique [5], and are retained if the vertex fit yields a goodness-
of-fit χ2 < χ2

max = 100;
(2) other tracks are added to the resulting vertex seeds one by one, and the

combination yielding the smallest increase in fit χ2 is retained;
(3) this procedure is repeated until the increase in fit χ2 exceeds a set maxi-

mum, ∆χ2
max = 15, or the total fit χ2 exceeds χ2

max;
(4) the resulting vertex is selected if in addition, the angle ζ between the

reconstructed momentum of the displaced vertex and the direction from
the primary to the displaced vertex (in the transverse plane) satisfies
cos ζ > 0.9; the vertex decay length in the transverse direction Lxy <
2.6cm.

(5) many displaced vertex candidates may result, with individual tracks pos-
sibly contributing to multiple candidates. The candidate list is pruned
until no two candidates are associated with identical sets of tracks.

(6) Associate secondary vertices with calorimeter jets if ∆R(vtx, jet) < 0.5.

In Fig. 4, we show distributions which characterize the properties of the sec-
ondary vertex reconstructed in tt MC events. We plot the multiplicity of ver-
tices found in a track jet, the number of tracks associated with the vertex, the
decay length significance of the vertex, and in case of multiple vertices in the
jet, we also plot the largest decay length significance. The efficiency of this
algorithm for a few different operating points as a function of the pT and η of
the associated calorimeter jet is shown in Fig. 5.

The algorithm as described above is referred to as the “Super Loose” algorithm
in Sect. 7.1. It features a high efficiency but a relatively high fake rate. To
exploit better the available information, a second tighter (“Loose”) version of
this algorithm is also applied. The differences with the first algorithm are:
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Fig. 4. Properties of the secondary vertices in tt MC: multiplicity of vertices found in
a track jet (top left), the number of tracks associated with the vertex (top right), the
decay length significance of the vertex (bottom left), and the largest decay length
significance (bottom right).

• the input tracks are required to have a DCA significance |Sd| > 3;
• the track association criterion uses ∆χ2

max = 10;
• the significance of the displacement of the vertex in the transverse plane

must satisfy Sxy ≡ Lxy/σ(Lxy) > 5.
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5 The Jet LIfetime Probability (JLIP) tag

The impact parameters of all tracks associated to a calorimeter jet can be
combined into a single variable, PJLIP [10], which can be interpreted as the
probability that all tracks in a jet originate from the primary interaction point.
Jets from light quark fragmentation are expected to present a uniform PJLIP

distribution between 0 and 1, whereas jets from c and b quarks will exhibit a
peak at very low PJLIP value. It is thus easy to select jets from b quarks by
applying a cut on this probability, the level of the cut depending on the signal
efficiency and background rejection desired for a given physics analysis.

Using the impact parameters of reconstructed tracks also allows the control
of their resolution by using the real data themselves, minimizing the need
for Monte-Carlo simulation. For this purpose, the impact parameter is signed
by using the perigee coordinates of the track relative to the fitted primary
vertex, ~dperi, and the jet momentum vector, ~pT(jet). In the plane transverse
to the beam axis, the distance of closest approach to the primary vertex (d =

|~dperi|) is given the same sign as the scalar product ~dperi · ~pT(jet). The signed
d distribution for tracks from light quark fragmentation is almost symmetric,
whereas the distribution for tracks from b-hadron decay exhibits a long tail at
positive values. Therefore, provided that the sign of ~dperi · ~pT(jet) is correctly
determined, the negative part of the d distribution allows the d resolution
function to be parametrized.

5.1 Calibration of the impact parameter resolution

In order to tune the computed error, σraw
d , on each track impact parameter,

the following variable is introduced: pscat = p(sin θ)3/2, where p is the particle
momentum and θ its polar angle relative to the beam axis. In the plane trans-
verse to the beam axis, the smearing due to multiple scattering is inversely
proportional to pT = p sin θ and proportional to the square root of the distance
traveled by the track. Assuming the detector material to be distributed along
cylinders aligned with the beam, this distance is also inversely proportional
to sin θ. The d distributions are then computed in 16 different pscat intervals.

In order to parametrize the d resolution, five track categories are considered:

• ≤ 6 CFT hits and ≥ 1 SMT hit (including the inner layer), for tracks with
|η| > 1.6;

• ≥ 7 CFT hits and 1, 2, 3 or 4 SMT superlayer hits.

The first category includes forward tracks outside the CFT acceptance, the
latter are central tracks with different numbers of SMT hits.
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Fig. 6. Impact parameter significance, S raw, distribution in the pscat = p(sin θ)3/2

interval between 2.5 and 3 GeV/c, for different track categories in multi-jet data.

For each track, the significance is defined as the signed d value divided by its
error:

Sraw
d =

d

σraw
d

. (1)

Figure 6 shows the Sraw
d distribution for different track categories in a given

pscat interval. In each pscat interval and each category, the Sraw
d distribution

is fitted using a Gaussian function (to describe the d resolution) and an ex-
ponential (to describe the tails). The fitted pull values (σ of the Gaussian in
the previous fit) are presented in Figure 7 for multi-jet data and simulation.
The superimposed curves are empirical parametrizations to the data and to
the QCD Monte-Carlo. The pull values are found to go up to 1.2 in the data,
while they are closer to 1 in the simulation.

As the impact parameter resolution may be sensitive to the primary vertex
resolution, the d significance is also fitted separately for events with different
numbers of tracks, NPV, attached to the primary vertex. As shown in Figure 8
for multi-jet data, the pull value increases significantly with NPV (here the
pscat dependence of the pull value is already corrected).

Then for each track, its d uncertainty can be corrected according to its mea-
sured pscat value, category i and number of tracks NPV at the primary vertex:
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σd = pull(pscat, i, NPV) · σraw
d (2)

Sd =Sraw
d /pull(pscat, i, NPV) .
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The corrected σd resolutions are shown in Figure 9 for multi-jet data and for
each category. They are parametrized as:

σd =
a

p (sin θ)3/2
+ b, (3)

where a describes multiple scattering effects and b is the asymptotic resolution
(which is sensitive to the primary vertex resolution, detector alignment, SMT
intrinsic resolution, etc.). This parametrization is superimposed in Figure 9
for multi-jet data and for the QCD simulation.

For forward tracks with fewer than 7 CFT hits and with high pscat (> 10 GeV/c),
the measured d resolution is in fact larger than its asymptotic fitted value (see
Figure 9 upper left). Do we know why that is?? More generally, the d
resolution is better in the simulation than in the data.
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Fig. 9. Corrected impact parameter resolution (µm) for tracks in multi-jet data as a
function of pscat = p(sin θ)3/2, for different track categories (points with error bars).
The blue solid (green dashed) curve is a fit to the data (QCD Monte-Carlo).

5.2 Lifetime probability

The data themselves are used to calibrate the impact parameter significance.
For multi-jet data or QCD Monte-Carlo, the negative part of the d significance
distribution, denoted impact parameter resolution function R(Sd), has been
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parametrized as the sum of four Gaussian functions. The track categories used
in the previous section are extended to take into account the number of SMT
and CFT hits, |η|, χ2 and pT values of the tracks, as listed in Table 1. The
category ranges are adjusted in order to describe as much as possible geometric
and tracking effects, while keeping enough events in each category. For each
of these 29 track categories, an impact parameter resolution function is fitted,
as illustrated in Figure 10.

JLIP track resolution functions in p14 jet trigger data

- negative significance
0 5 10 15 20 25 30 35 40 45 50

1

10

10
2

10
3

<2
2χ|<1.2, η7 CFT, |≥

>1 GeV/cTp

1 SMT superlayer

- negative significance
0 5 10 15 20 25 30 35 40 45 50

1

10

10
2

10
3 <2

2χ|<1.2, η7 CFT, |≥

>4 GeV/cTp

2 SMT superlayers

- negative significance
0 5 10 15 20 25 30 35 40 45 50

1

10

10
2

10
3

10
4

<2
2

χ|<1.2, η7 CFT, |≥

>4 GeV/cTp

3 SMT superlayers

- negative significance
0 5 10 15 20 25 30 35 40 45 50

1

10

10
2

10
3

10
4

<2
2χ|<1.2, η7 CFT, |≥

>4 GeV/cTp

4 SMT superlayers

Fig. 10. Impact parameter resolution functions as measured in multi-jet data. They
are shown here for four of the 29 track categories. The resolution functions are
parametrized as the sum of 4 Gaussian functions.

SMT hits CFT hits |η| χ2 pT ( GeV/c)

≥ 1 hit in inner layer ≤ 6 1.6-2.0 or > 2.0 > 0 > 1

1 superlayer ≥ 7 < 1.2 0-2 or > 2 > 1

” ” > 1.2 > 0 > 1

2, 3 or 4 superlayers ≥ 7 < 1.2 0-2 1-2, 2-4 or > 4

” ” ” 2-4 or > 4 > 1

” ” 1.2-1.6 0-2 or > 2 > 1

” ” > 1.6 > 0 > 1

Table 1
Track categories used for the parametrization of the impact parameter resolution
functions.

For tracks with a positive d significance, the resolution function can be con-
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verted into a probability for this track to originate from the primary interaction
point:

Ptrk(Sd) =

∫ −|Sd|
−50 R(s)ds
∫ 0
−50 R(s)ds

, (4)

where only tracks with |Sd| < 50 are retained. Here I’d like to say: “to
reject further tracks from V 0 decays as well as misreconstructed
tracks”. Would that be correct?

The corresponding track probabilities are shown in Figure 11 for multi-jet
data and simulated jets of different flavours, and for positive and negative d
values. Tracks with negative d values in multi-jet data and in simulated light
quark jets are used to define the d resolution functions, thus ensuring uniform
Ptrk(Sd < 0) probability distributions. For positive d, a significant peak at low
Ptrk(Sd > 0) probability is present in simulated c- and b-jets. In multi-jet data,
a peak is also observed at low values which is partly due to the presence of
V 0’s (which are not all removed), but also to tracks from charm and b-hadron
decays recorded in these events. Note that for simulated c- and b-jets, a slight
peak remains at negative d due to a flip of the d sign, mainly due to tracks
very close to the jet axis direction.

Finally, the selected Ntrk tracks with positive d significance are used to com-
pute the jet probability PJLIP as

PJLIP = Π ·
Ntrk−1

∑

j=0

(− ln Π)j

j!
with Π =

Ntrk
∏

i=1

Ptrk(Sd,i) . (5)

For the tracks with negative d, a jet probability can be computed analogously
(this will be relevant in Sect. 9).

By construction, if the Ptrk are uniformly distributed and uncorrelated, the
PJLIP will also be uniformly distributed, independent of Ntrk. Therefore, apart
from wrongly assigned negative d in the case of tracks originating from the
decay of long-lived particles, and from any correlations that are induced by the
common primary vertex (which is reconstructed from the tracks under consid-
eration, among others), the resulting PJLIP distribution is indeed expected to
be flat for negative d tracks in multi-jet data. These distributions are shown
in Figure 12 for multi-jet data and simulated jets of different flavours, and for
positive and negative d values.
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Fig. 11. Track probability in multi-jet data and qcd Monte-Carlo simulation of
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6 The Counting Signed Impact Parameter tag

In this method, like in Section 5, there is no attempt to use reconstructed
secondary vertices. Instead, the signed impact parameter significance Sd is
calculated for all good tracks located within a cone of radius 0.5 around the
jet axis. For the present purpose, the definition of a good track is as follows:

• the track originates from the primary vertex (the difference between the z
coordinates of the DCA point and the primary vertex is less than 1 cm);

• the track DCA must not be too large, |d| < 2 mm;
• the track transverse momentum should satisfy pT > 1 GeV/c;
• the track fit should be of good quality, χ2/NDF < 3;
• at least 2 hits in the inner SMT layers or at least 3 hits anywhere in the

SMT are required;
• tracks with fewer than 10 CFT hits (forward tracks) must have at least 4

stereo SMT hits.

These tracks are also required not to originate from a V 0 candidate, as detailed
in Section 3.

A jet is considered to be tagged if there are at least two good tracks with
Sraw

d /a > 3 or at least three good tracks with S raw
d /a > 2, where a is a

renormalizing parameter. The choice of a determines the operating point (b-
tagging efficiency and mistag rate) of the algorithm. Alternatively, if a jet has
at least two good tracks with positive S raw

d , then the minimum value of a at
which there are at least two good tracks with S raw

d /a > 3 or at least three
good tracks with Sraw

d /a > 2 can be used as a continuous output variable of
the tagger. In the version of the algorithm used in DØ, a is fixed to be 1.2.

In the actual implementation of the algorithm, there is an additional condition
related to the fact that the sign of Sraw

d cannot be determined accurately
for tracks that are very close to the jet axis. The criterion of closeness is
empirically chosen as the difference in the azimuthal angle between the track
and jet directions ∆ϕ being less than 20 mrad. Four categories of tracks are
counted separately:

• tracks with Sraw
d /a > 3, |∆ϕ| > 20 mrad (“3σ-strong” tracks, their total

number to be denoted as N3s),
• tracks with 2 < Sraw

d /a < 3, |∆ϕ| > 20 mrad (“2σ-strong” tracks, N2s),
• tracks with |Sraw

d /a| > 3, |∆ϕ| < 20 mrad (“3σ-weak” tracks, N3w),
• tracks with 2 < |Sraw

d /a| < 3, |∆ϕ| < 20 mrad (“2σ-weak” tracks, N2w).

If CSIP is used as a stand-alone algorithm, the jet is considered tagged if
N2s +N3s +N2w +N3w ≥ 3 and N2s +N3s ≥ 1, or N3s +N3w ≥ 2 and N3s ≥ 1.
In the DØ implementation the four numbers are packed in a single variable
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which is used in the combined algorithm as explained in Section 7.
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7 The Neural Network tag

The Neural Network tag (or NN tag) combines input variables from the SVT,
JLIP, and CSIP tagging algorithms to create a single b-tag. By using an arti-
ficial neural network, a more optimal combination of the variables is achieved.
The NN implementation chosen is the TMultiLayerPerceptron imple-
mented in the ROOT [11] framework.

The basic neural network structure is Ninput:Nhidden:Noutput. The number of
hidden layers was chosen to be one, as it is advantageous to keep the NN as
simple as possible. The NN has seven input nodes and one output node, and
24 hidden nodes in a single layer. The number of hidden nodes was optimized
after choosing the input variables. Can we substantiate the “advantage”
of having only a single hidden layer?

7.1 Input variables

The choice of input variables is crucial for the performance of the NN. Because
of that, before creating the NN several studies were performed on the input
variables. The initial variable sets, which were later re-optimized, were tested
with a NN structure N :2N :1, where N is the number of input variables, using
500 training epochs and selection cuts of (SVT Sxy > 2 or CSIP NCSIP > 8 or
JLIP PJLIP < 0.02). The NCSIP variable is defined below.

Seven input variables were selected for their good discrimination between b-
jets and non-b jets. Five of the variables are based on the secondary vertices
reconstructed using the SVT algorithm. The remaining two summarize infor-
mation from the JLIP and CSIP algorithms. In detail, the input variables
are:

SVT Sxy - The decay length significance (the decay length in the transverse
plane divided by its uncertainty) of the secondary vertex with respect to
the primary vertex.

SVT χ2
dof

- The χ2 per degree of freedom of the secondary vertex fit.
SVT Ntrk - The number of tracks used to reconstruct the secondary vertex.
SVT mvtx - The mass of the secondary vertex. The mass is calculated from

the combined momentum four-vectors of the tracks, assuming all particles
were pions.

SVT Nvtx - The number of secondary vertices reconstructed in the jet.
JLIP PJLIP - The “jet lifetime probability” computed in Section 5.
CSIP NCSIP - A combined variable based on the number of tracks with an

impact parameter significance greater than some value. This variable is dis-
cussed in more detail below.
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Since more than one secondary vertex can be found for each jet, vertex vari-
ables are ranked in order of the most powerful discriminator, the decay length
significance (Sxy). The secondary vertex with the largest Sxy in a jet is used
to provide the input variables. If no secondary vertex is found, the SVT values
are set to 0, apart from the SVT χ2

dof which is set to 75 corresponding to the
upper bound of χ2

dof values.

A rather standard implementation of a secondary vertex tagging algorithm
would require a significantly displaced vertex, possibly along with other qual-
ity criteria. While such an approach helps to isolate a pure sample of heavy
flavour decays, it typically results in a low efficiency. In the context of a NN
optimization, this is undesirable as any vertex-related information is only avail-
able if a displaced vertex is found. For this reason, the “Super Loose” SVT
algorithm as described in Sect. 4 is used: even if the vertex candidates it finds
are of significantly poorer quality, it finds many candidates (it would be
good to be able to refer to a figure here!), and they still provide addi-
tional discrimination between b-jets and other flavours. Figure 13 shows the
efficiency for b-quark and light-flavour jets of both algorithm choices on QCD
samples. The NN tagger is found to perform best if information for both the
“Super Loose” and a tighter SVT algorithm, the “Loose” version also dis-
cussed in Sect. 4, is used: the Ntrk variable is taken from the latter, and all
other SVT variables from the former.
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Fig. 13. SVTSL (red circles) and SVTL (green squares) efficiencies for QCD bb̄ and
QCD fake MC jets.

The CSIP NCSIP variable is based on the four CSIP variables N3s, N2s, N3w,
N2w described in Section 6. Neural Networks tend to perform best when pro-
vided with continuous values spread over a range. Since the CSIP variables
have small integer values which are not very good as inputs, they are combined
in one variable which brings the advantage of reducing the number of input
variables, hence simplifying the NN:

NCSIP = 6 × N3s + 4 × N2s + 3 × N3w + 2 × N2w. (6)

The weights were determined in an empirical manner to give optimum perfor-
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mance for this variable alone.

The distributions for the input variables to the NN in Monte Carlo and QCD
data are shown in Fig. 14.
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Fig. 14. The NN variables CSIP NCSIP, JLIP PJLIP, SVT χ2
dof, mvtx, Nvtx, Sxy

and Ntrk for QCD bb̄ MC (solid lines), light jet QCD MC (dashed lines) and data
(dotted lines). All histograms are normalized to unity.
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7.2 Neural Network Training

The training samples and training algorithms are optimized prior to the input
variable optimization as they do not depend on the input variable optimiza-
tion. The NN is trained on QCD light jet and bb̄ samples, weighted to give an
equal number of jets after input selection cuts. The signal sample of 270,000
bb̄ events and the background sample of 470,000 light jet QCD events are each
split in half, with one half used for the training sample and the other half for
the test sample.

The number of training epochs was varied from 50 up to 2000.After testing
different training versions, the number of training epochs was set to 400.

7.3 Input Selection Cuts

Another important attribute of the NN is the selection of the jets which are
used to train the NN. A selection which is too loose can cause a loss of perfor-
mance and resolution as the NN is learning a signal from background separa-
tion which could have been carried out with a simple cut. A selection which
is too tight will cause a significant loss of b-jets and therefore limit the NN
training.

The input selection cuts were optimized by considering each variable in turn,
optimizing first SVT Sxy, then JLIP PJLIP, and finally CSIP NCSIP. The NN
was trained on the QCD bb̄ and QCD light-flavour samples and the optimiza-
tion plots were produced from a high pT ALPGEN tt̄ sample and cross checked
with the QCD bb̄ sample to ensure there was no sample, pT or MC generator
dependence in the optimization.

7.4 NN Performance on Monte Carlo

The output from the optimized NN b-tagger on bb̄ and light-flavour QCD MC
is shown in Fig 7.4. The NN b-tagger shows significant separation between
signal and background samples.

7.5 Operating Points

The NN tagger performance was evaluated for 12 operating points, as detailed
in Table 2.
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QCD bb̄ MC (solid line). Both distributions are normalized to unity.

Table 2
The NN tagger’s operating points.

Name MegaTight UltraTight VeryTight Tight Medium oldLoose

NN Cut > 0.925 > 0.9 > 0.85 > 0.775 > 0.65 > 0.5

Name Loose L2 L3 L4 L5 L6

NN Cut > 0.45 > 0.325 > 0.25 > 0.2 > 0.15 > 0.1
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8 Efficiency estimation

The performance of the tagging algorithm cannot simply be inferred from
simulated samples. Several effects cause differences between simulated and
real data:

• Monte Carlo hit resolutions, both in the CFT and in the SMT, have been
tuned to reproduce those in the data. However, the tuning cannot be ex-
pected to be perfect as the observed resolutions in the data are also affected
by un-understood geometrical effects which do not play a role in the simu-
lation;

• a small but non-negligible fraction of the channels, in particular in the SMT,
fail to readout from time to time.

These effects lead to different effective resolutions and efficiencies. A calibra-
tion is therefore required. To this end, b- and c-jets are denoted “signal” and
their efficiency estimation is described below. Jets originating from u, d, or s
quarks or gluons are considered background, and their tag rate estimation is
described in Section 9.

8.1 The SystemD method

The SystemD method has been developed to determine identification efficien-
cies using almost exclusively the real data. Monte Carlo simulation is only
used to estimate correlation coefficients. The method involves several, essen-
tially uncorrelated, identification criteria which are applied to the same data
sample. Combining these criteria allows the definition of a system of equations
which can be solved to extract the efficiency of each criterion.

The data sample is assumed to be composed of a signal and several back-
grounds. Let f0 be the fraction of signal events and fi=1..b the fraction of each
considered background where b is the total number of backgrounds. These
fraction must satisfy:

b
∑

i=0

fi = 1. (7)

Then consider c uncorrelated identification criteria with different selection
efficiencies εk=1..c

i=0..b on the signal and backgrounds. Only a fraction Qk of the
total number of events will pass the k-th identification criterion. Then a new
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set of equations can be added for each selection:

b
∑

i=0

εk
i fi = Qk. (8)

As the selection criteria are uncorrelated, the total efficiency εk1,..,kr

i=0..b (r ≤ c)
of applying successively several of them can be factorized in terms of single
efficiencies εk

i :

εk1,..,kr

i =
r

∏

v=1

εkv

i . (9)

A generalization of Eqn. (8) can then be obtained for a combination of several
criteria:

Qk1,..,kr =
b

∑

i=0

(

r
∏

v=1

εkv

i

)

fi. (10)

The signal and background fractions are b + 1 unknown parameters and each
identification criterion introduces b+1 new unknowns in the form of selection
efficiencies. The number of equations of the form (10) depends on the number

of combinations of the c criteria which leads to a total of
∑c

r=0

(

r
c

)

= 2c

equations. To obtain a system of equations which can be solved, b and c must
satisfy:

(1 + c) × (1 + b) ≤ 2c. (11)

The simplest non-trivial solutions are:

• c = 3, b = 1 : 8 equations with 8 unknowns;
• c = 4, b = 2 : 16 equations with 15 unknowns.

The system of equations is nonlinear and can have several solutions. Only the
simplest case of 8 equations will be considered in the following. This system
has two solutions, which differ by the interchange of efficiencies assigned to
the signal and background samples. As will be detailed in Sect. 8.2, further a

priori knowledge of at least one the unknown parameters is required to resolve
the ambiguity. The input parameters are the fractions of events Qk0,..,kr

i which
are determined directly from the real data. There is therefore no input from
simulated events. Solving the system gives access to the signal and background
fractions and to the various efficiencies.

In a more realistic model, identification criteria can have some correlation
between them. Such correlations can be accounted for by adding into the
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equations correction factors, which then need to be evaluated independently. In
the application described in Sect. 8.2, they will be estimated on simulated data
sets. Generically, a correction factor κjk

i describing the degree of correlation
between the selections j and k applied to sample i is obtained as

κjk
i =

εjk
i

εj
iε

k
i

=
Ni N jk

i

N j
i Nk

i

, (12)

where Ni represents the total number of (simulated) events for sample i, N j
i

and Nk
i denote the numbers of events passing selections j and k, and N jk

i

denotes the number of events pass both selections. Higher order correlations
can be introduced in a similar fashion. Summarizing, the method remains
mostly based on real data. The Monte Carlo simulation is only used to estimate
correction factors which are ratios of efficiencies.

8.2 Application to b-tagging efficiency measurements

The SystemD methods is used here in order to extract the b-tagging efficiencies
of the NN tagger. The method is applied to a sample of jets in real data events
satisfying the following criteria:

• ET > 15 GeV;
• |η| < 2.5;
• the jet must be taggable;
• the jet must contain a muon with pµ

T > 4 GeV/c within a cone of radius
R =

√
∆φ2 + ∆η2 = 0.5 around the jet axis. The original (JLIP) text

stated a cut R < 0.7 ?? And how about the fact that we require
Medium muons with χ2 < 100 here – go into detail?

The lifetime composition of the resulting sample could be biased by third level
trigger requirements applying impact parameter or secondary vertex require-
ments. To avoid such biases, events are required to have passed at least one
lifetime-unbiased trigger. These requirements result in a sample of 141·106

jets (does this include the requirement of an away jet??). The sample
consists of a mixture of b-, c-, and light-flavour jets. The first two are mostly
due to semimuonic decays of B and C hadrons; muons in light-flavour jets
arise mainly from in-flight decays of π± and K± mesons. To apply the Sys-

temD method as described above, however, only a single source of background
can be dealt with. The c- and light-flavour backgrounds are therefore lumped
together in the following. An important consequence of this is the fact that
the use of the SystemD method only allows to determine the efficiency for a
specific mixture of c-quark and light-flavour jets; it is therefore not useful to
extract efficiencies for the separate background sources.
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Three identification criteria are used which include the working point of the
b-tagging algorithm under study. The two other selections are based on other
properties of b-jets events.

The first one is a cut on the transverse momentum of the muon relative to the
direction obtained by adding the muon and jet momenta, pT,rel. This criterion
is chosen because the high pT,rel values in B hadron decays are due to the high
mass of the b quark, and as such are in principle expected to be independent
of the lifetime criterion; the corresponding correction factors (see Sect. 8.1),
denoted κb for b-jets and κcl for background jets, are evaluated below. A cut
pT,rel > 0.5 GeV/c is chosen in SystemD in order to have a similar efficiency
for c and light quark jets and to have a limited sensitivity to the pT,rel distri-
bution tail. Any sensitivity to this value is taken into account as a systematic
uncertainty.

As b quarks are usually produced in pairs, the last selection criterion con-
sists of increasing the fraction of b-jets by looking for another tagged jet in
the same event, using the JLIP algorithm (see Section 5) and requiring that
PJLIP < 0.005 for this jet. As this criterion is not applied to the muon jet
itself, no correlation with the pT,rel criterion is expected; this hypothesis has
been verified explicitly. The lifetime tagging requirements applied to both jets,
however, could be correlated by the fact that they involve the same primary
vertex. The corresponding correction factors are denoted β for b-jets and α
for background jets, and are again evaluated below. It should be pointed out,
however, that the application of the PJLIP cut modifies the flavour composition
of the background sample, as the charm tagging efficiency is expected to be
significantly higher than that for light-flavour jets. This causes a dependence
of α on the physics assumptions made in the Monte Carlo programs (the pro-
duction cross sections for the various processes). Fortunately, it turns out that
the uncertainty on α affects the b-tagging efficiency only very marginally.

To illustrate the effect of these additional cuts, the pT,rel distribution is shown
in Figure 16: once for all taggable jets (top), and once after applying the
PJLIP cut both to the muon jet and to another taggable jet observed in the
same event (bottom). The data are fitted to Monte-Carlo templates of each
quark flavour, with a free normalization. A reasonable agreement is obtained;
a clear increase in the fraction of b jets is observed upon applying the PJLIP

cut. (It should be pointed out that identical templates are used in both cases:
although such fitting procedure could in principle also be used to estimate b-
jet tagging efficiencies, it makes more assumptions than the SystemD method
and is not used for this purpose.) Here I think it is inappropriate to show
a plot where the away-side cut is applied to both jets: that does not
correspond to the actual procedure!
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Fig. 16. pT,rel distributions of muons in taggable jets: (top) without lifetime tagging,
(bottom) with a PJLIP cut applied both to the muon jet and to another taggable jet
observed in the same event. The superimposed fitted histograms take into account
the contribution of b → µX (red dashed), c → µX (green dotted), light quark jets
(blue dash-dotted), and their sum (full histogram).

Denoting the criteria used in SystemD as (t) for the lifetime tagging criterion,
(m) for the pT,rel cut, and (b) for the PJLIP < 0.005 cut applied to another
taggable jet, and with the notation for the correction factors as above, the
final system to solve is therefore:

fb + fcl = 1

fbε
t
b + fclε

t
cl = Qt

fbε
m
b + fclε

m
cl = Qm

fbε
b
b + fclε

b
cl = Qb

fbκbε
t
bε

m
b + fclκclε

t
clε

m
cl = Qt,m

fbε
m
b εb

b + fclε
m
cl ε

b
cl = Qm,b

fbβεb
bε

t
b + fclαεb

clε
t
cl = Qb,t

fbκbβεt
bε

m
b εb

b + fclκclαεt
clε

m
cl ε

b
cl = Qt,m,b

(13)

At this point, a remark is in order: as the SystemD method leads to a set of
nonlinear equations, two possible solutions exist for the quantity of interest,
the b-tagging efficiency. The ambiguity between these two solutions uses the a
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priori knowledge that the efficiency of each selection criterion for b-jets should
be higher than for background jets: εt,m,b

b > εt,m,b
cl .

8.3 SystemD Correction Factors

I’m not sure this figure is still useful, given that we actually do take
α from the MC!

(B,J)
clκCorrective factor 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.4

0.405
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          SystemD b-tag efficiency for JLIP Medium.

Fig. 17. Efficiency of the JLIP Medium tagging algorithm measured with the Sys-
temD method as a function of the α correction factor. The other input parameters
are given in Table 3.

Table 3 gives an example of SystemD applied to the JLIP Medium working
point on a sample of roughly 8 millions of selected jets: fractions of jets pass-
ing each identification criterion, correlation coefficients and solutions of the
system (13).

We need plots for the MC-derived correlation coefficients here!

8.4 Further Corrections

The b-tagging efficiency obtained with the SystemD method is valid for jets
with a semi-muonic decay of the b quark. To obtain the efficiency for an
inclusive sample, a correction is determined from simulated Z → bb̄ events
with B hadrons decaying inclusively or as b → µX. The final efficiency is then
defined as:

εdata
b =

εt
b · εMC

b

εMC
b→µX

= SFb · εMC
b , (14)
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Table 3
Numerical example of SystemD applied to the JLIP Medium tagger. The first col-
umn gives the fractions of selected jets which are the system input. The solutions
of the system is presented in the eight upper right array elements (bold). The mea-
sured b-tagging efficiency for JLIP Medium is 42%. The eight lower right elements
present the correlation coefficients estimated from the simulation. The factors κb,
κcl and α are fixed to 1. The correlation coefficients κt,m,b

b and κt,m,b
cl are approxi-

mated as the product of the two-criteria correlation coefficients. (Drop this last
sentence??)

Total

Q0 fraction fb fraction fcl fraction

1 0.26 0.74

Single selection criteria

(x) Q(x) fraction εb efficiency εcl efficiency

T 0.13 0.42 0.025

M 0.45 0.66 0.37

B 0.062 0.14 0.033

Combined selection criteria

(x) Q(x) fraction κb factor κcl factor

T,M 0.077 0.99 0.90

M,B 0.034 1 1

B, T 0.016 1.016 1

T,M,B 0.011 1.006 0.90

where SFb = εdata
b→µX/εMC

b→µX = εt
b/ε

MC
b→µX is the data-to-simulation efficiency

scale factor. The tagging efficiency for c quark jets is not measured in data.
It is assumed that the data-to-simulation scale factor is identical for b and
c-jets. The c-jet tagging efficiency is then derived from the simulation by:

εdata
c = SFb · εMC

c . (15)

8.5 SystemD cross-check

Is it useful to retain this section? If so, it should be redone with the
p17 NN tagger!

The validity of the SystemD method has been checked on a sample of simulated
events. In such a sample the jet flavour is known and the SystemD result can
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be compared to the Monte-Carlo truth. As too few light jets contain a muon, a
random track within the jet cone with pT > 4 GeV/c is used to model a muon
from pion or kaon decay. The test sample is composed of 430 000 jets with a
muon (75% light-flavour jets, 5% c-jets, and 20% b-jets). SystemD has been
applied in seven bins of jet transverse momentum, from 15 to 135 GeV/c. The
JLIP Medium working point is used.Its correlation coefficients are given in
Table 3. The results are presented in Figure 18 and shows a good agreement
with the expected values, especially regarding the JLIP b-tagging efficiency.
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Fig. 18. Comparison between the SystemD results (full dots) and the Monte-Carlo
truth (open dots) for a test sample of simulated jets for JLIP Medium as a function
of the jet transverse momentum. From left to right, top to bottom: fb, fcl, εm
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8.6 Data and MC Samples

The MC samples used are outlined in Table 4. Removed the add’l selec-
tion criteria here – already mentioned. Move (or remove) the MC
samples table, too?

Table 4
The MC samples used in certification of the NN tagger.

Sample Number of Events

inclusive tt̄ 571,750

Z → bb̄ 105,250

Z → bb̄ with µ 105,750

Z → cc̄ 107,250

Z → cc̄ with µ 107,750

Z → qq̄ (q = u,d,s) 103,750

Z → qq̄ with µ (q = u,d,s) 107,000

QCD pT = 20 − 40, 40 − 80, 80 − 160, 160 − 320 972,500

QCD bb̄ pT = 20 − 40, 40 − 80, 80 − 160, 160 − 320 265,000

QCD cc̄ pT = 20 − 40, 40 − 80, 80 − 160, 160 − 320 239,287

8.7 Jet Samples

The number of jets available in the MC samples after data processing and
physics object and jet cut selections is outlined in Table 5. Only taggable jets
(see Section 3.2) are used, and only events with at least two taggable jets are
considered.

The different energy QCD samples are merged into a continuous pT “QCD
Merged” sample by weighting the different energy samples so that a continuous
fall-off in the jet pT spectrum is obtained. Larger b and c-jets samples are
created by combining all the appropriate jets from the different production
channels.

The precise relevance of this subsection isn’t entirely clear to me.
Would it be more appropriate in the NN section?

37



Table 5
Number of MC jets of each flavour available in each of the samples after data
processing and jet selection.

Flavour Sample Number of Jets

b Z → bb̄ 130,220

tt̄ → b 1,662,929

QCD bb̄ (Merged) 90,252

b (Combined) 2,349,755

b → µX Z → bb̄ → µX 42,726

tt̄ → b → µX 175,579

b → µX (Combined) 273,281

c Z → cc̄ 137,740

tt̄ → c 404,753

QCD cc̄ (Merged) 90,441

c (Combined) 1,076,054

c → µX Z → cc̄ → µX 47,986

tt̄ → c → µX 17,715

c → µX (Combined) 91,824

uds Z → qq̄ 152,590

QCD Fake (Merged) 239,118

All QCD All 2,086,603

8.8 Scale Factor Parametrization

Parametrizations of the tagging efficiency are used as tag rate functions (TRFs)
and scale factors (SF) to simulate the performance of the tagging algorithm
in simulations. The following functions are defined:

TRFb: The efficiency to tag a b-jet in data.
TRFc: The efficiency to tag a c-jet in data.
SF: The factor by which the b and c MC tagging efficiencies have to be

multiplied by to obtain the data tagging efficiencies.

These functions are parametrized in terms of the ET and η of the jets. As the
use of the SystemD method requires high statistics to lead to stable solutions,
it is not possible to extract a proper 2D parametrization. Instead, it is assumed
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that the dependence on these variables can be factorized:

ε(ET, η) =
1

εall

· f(ET) · g(|η|),

where εall is the efficiency for the entire sample, and

f(ET) =
c

1 + ae−bET

, (16)

g(|η|)= d + e|η| + f |η|2 + g|η|3 + h|η|4,

where a − h are fit parameters.

The TRFs are directly measured for muonic b-jets in data and Monte Carlo,
and for an inclusive b-jet sample in Monte Carlo only. A data/MC scale factor
(SF) is determined as the ratio of muonic b-jet tagging efficiencies in data and
Monte Carlo. The SF measures the effect on the tagging rate caused by the
differences in tracking between data and MC. The profile of the SF in ET

and |η| allows tagging rates to be corrected over the full ET and |η| phase
space. The inclusive b-jet data TRF is calculated by multiplying the inclusive
b-jet MC TRF by the SF. A similar procedure is used to determine the c-jet
TRFs. Shouldn’t we say something about how well the factorization
hypothesis works?

8.9 Systematic Uncertainties

Uncertainties on the resulting efficiencies arise from the following sources:
the SystemD calculations (due to uncertainties on the correction factors as
well as limited data statistics); and the dependence of the TRFs on the MC
samples, as well as possible imperfections in their chosen parametrization.
These uncertainties are discussed in some detail below.

8.9.1 SystemD uncertainties

The correction factors α, β, κb and κcl (see Section 8.3) are evaluated on
Monte Carlo. The effect of the uncertainty on each correction factor is eval-
uated by repeating the SystemD computations with the parametrization of
that factor shifted by one standard deviation, while all other correction fac-
tors are fixed to their nominal values; the resulting changes in the computed
efficiency are interpreted as systematic uncertainties. The effect of the choice
of pT,rel cut in the SystemD calculations is evaluated by varying the cut value
between 0.3 GeV/c and 0.7 GeV/c. The total relative systematic uncertainty
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associated with the SystemD input parameters is estimated by adding the in-
dividual contributions in quadrature, and varies between 1.3% and 1.7% for
the different operating points.

For each bin in η and ET, the SystemD systematic uncertainty for that bin is
added in quadrature with the SystemD fit uncertainty. This yields an overall
uncertainty with which the efficiency is known for each bin. This procedure
is repeated for the SystemD efficiency of the entire sample. The combined
uncertainties are then used to fit the parametrized curves in ET and |η|, with
the SystemD uncertainty folded into the statistical uncertainties.

The overall relative statistical errors are calculated by evaluating

σstat =
f+1σ(ET) · g+1σ(|η|)

ε+1σ
all

− f(ET) · g(|η|)
εall

, (17)

where σstat is the statistical error, f and g parametrize the efficiency as a
function of jet ET and |η| and εall is the efficiency for the entire sample (see
Eqn. 16); the +1σ quantities are the corresponding fluctuations upward by
one standard deviation. This is also repeated with the downward fluctuations;
the larger deviation is taken as the statistical uncertainty.

The following comes from the old JLIP description:

As an illustration for the JLIP Medium working point, varying the input fac-
tors in SystemD uncertainties, the obtained results are summarized in Table 6.
The overall relative uncertainty on the muon-in-jet b-tag efficiency is ±1.4%
for all working points.

Table 6
Relative systematics on the b-tag efficiency with the SystemD method for the JLIP
Medium working point. This should be replaced with its NN equivalent, if
deemed useful.

Source Relative uncertainty (%)

κb ± 0.004 ±0.9

κcl = 0.90 ± 0.05 –

β = 1.016 ± 0.003 ±0.4

α = 1.0 ± 0.8 ±0.3

pT,rel > 0.5 to 0.9 GeV/c ±0.9

Total ±1.4
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8.9.2 TRF parametrization and sample dependence

Both the parametrization and MC sample dependence systematic errors, which
result from the use of TRFs derived from generic combined samples of MC b, c
and muonic b jets, are quantified in one measurement. By comparing the per-
centage difference between the number of actual tags (Nobs) and the predicted
number (Npred) in various bins in ET and η regions, effectively performing a
closure test, a total error on the TRFs is determined from the spread of the
percentage differences.

The closure tests are carried out for each of the MC samples used to construct
the TRFs. The percentage differences are calculated in ET bins in the CC,
ICR and EC calorimeter regions, and the percentage differences are binned
weighted by the number of actual tags in the region. The RMS of the resulting
distributions are used to quantify the total error on each of the TRFs. The
relative uncertainty determined by this method ranges from 1.2% for the lowest
operating point to 3.5% for the tightest operating point for the inclusive b-jet
TRF and from 2.4% to 4.0% for the inclusive c-jet TRF.

8.9.3 Total systematic uncertainty

The total systematic uncertainty is derived by adding the fit uncertainty of
the parametrizations and the parametrization and sample dependence uncer-
tainties in quadrature. The final systematic uncertainty ranges from 1.9% for
the loosest operating point to 4.8% for the tightest operating point for TRFb,
from 2.8% to 5.2% for TRFc and from 1.4% to 3.4% for the Data/MC scale
factor.

The total errors, given by the statistical and systematic errors combined in
quadrature, for the SF, TRFb and TRFc are shown in Fig. 19 for two operating
points. The relative error increases rapidly at high η, due to limited statistics
in that region and because the value of the scale factor drops rapidly for
|η| > 2.

The following again comes from the old JLIP description:

As summarized in Table 7, systematics on the TRFb and TRFc tagging rate
functions and on the SFb scale factor include the SystemD uncertainties, the
uncertainty on the jet (ET, |η|) factorization hypothesis and the Monte-Carlo
limited statistics. These contributions are quadratically added.

For JLIP, the TRFb systematics range from ±3.3% to ±2.0% for the Ultra-
Tight to SuperLoose working points. The TRFc systematics are ±3.4% in
average for all working points. The SFb systematics are ±1.7% in average for
all working points.
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Fig. 19. The total relative error (combined systematic and statistical) for the Scale
Factor (SF) (top), TRFb (middle) and TRFc (bottom) in terms of ET (left) when
η = 1.2 and η (right) when ET = 45 GeV.
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Table 7
Relative systematics on TRFb, TRFc and SFb, for all JLIP working points.

JLIP cut < 0.1% < 0.3% < 0.5% < 1.0% < 2.0% < 4.0%

SystemD ±1.4% ±1.4% ±1.4% ±1.4% ±1.4% ±1.4%

factorization ±0.5% ±0.4% ±0.4% ±0.4% ±0.4% ±0.4%

inclusive b MC stat. ±2.8% ±2.4% ±2.1% ±1.6% ±1.3% ±1.1%

inclusive c MC stat. ±2.8% ±3.0% ±3.3% ±2.9% ±2.9% ±2.9%

b→ µX MC stat. ±1.0% ±0.8% ±0.7% ±0.7% ±0.7% ±0.7%

TRFb ±3.3% ±2.9% ±2.6% ±2.3% ±2.1% ±2.0%

TRFc ±3.3% ±3.4% ±3.7% ±3.3% ±3.3% ±3.3%

SFb ±1.8% ±1.7% ±1.6% ±1.6% ±1.6% ±1.6%
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9 Fake Rate Determination

The cornerstone of the determination of the light quark mistag rate (where
“light” stands for uds-quark or gluon jets) or fake rate is the notion that
neglecting long-lived particles such as the V 0s mentioned in Sect. 3.3, high-
impact parameter tracks or displaced vertices reconstructed in light-flavour
jets result from resolution effects. To good approximation, these effects should
not depend on any jet direction.

This fact is exploited by using tracks with negative impact parameters (see
Sect. 5 for the impact parameter sign convention used) and/or displaced ver-
tices with negative decay lengths. Barring wrongly assigned negative impact
parameter signs (which may occur whenever the jet and track are nearly
aligned in azimuth, and which is important for long-lived particles), using
such tracks and vertices should provide a reasonable estimate of the fake rate.

9.1 Data Sample

To minimize the impact of wrongly attributed impact parameter signs, the
fake rate is determined in multijet data, which is dominated by generic QCD
processes and hence has a low heavy flavour content. Two samples are used
for this purpose:

• the EM sample: this sample consists of events selected by requiring at least
one electron candidate with pT > 4 GeV/c, and with low missing transverse
energy, /ET < 10 GeV. At least one trigger unbiased in terms of b-tagging
is required. Most of the electron candidates in reality are jets which deposit
a large fraction of their energy in the EM section of the calorimeter. This
may bias the sample compared to generic QCD processes, as the fraction of
a jet’s energy deposited through electromagnetic processes depends on the
jet flavour. This bias is removed by only considering jets whose distance to
the nearest identified EM cluster is larger than ∆R = 0.4. After all these
requirements, this sample contains 106 million taggable jets in 72 million
events;

• the QCD sample: this sample consists of all events collected using pure jet
triggers. It contains 154 million taggable jets in 249 million events. For the
sake of consistency, jets in the vicinity of identified EM clusters are not
considered either in this sample. Since trigger requirements should not bias
such jets in this sample, the effect of this removal should be small, and will
be evaluated below.

These two samples are combined for most purposes; their comparison allows
to estimate the systematics associated with the choice of a particular sample.
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Figure 20 compares the distributions of several kinematical variables between
these samples and generic QCD events simulated using the Pythia [12] event
generator: jet multiplicity per event, ET, |η| and track multiplicity per jet. As
expected, the QCD sample is better described by the QCD simulation than
the EM sample. This last comment should be explained!?
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Fig. 20. Number of jets per event, jet ET and |η| and track multiplicity per jet in
the QCD and EM data samples (dots) and QCD Monte-Carlo (solid line histogram,
normalized to the number of entries). NB this is a p14 plot and should be
remade for p17!

9.2 Negative Tag Rate

The use of negative impact parameter tracks and negative decay length dis-
placed vertices is rather straightforward: the algorithms providing the NN
input variables listed in Sect. 7.1 need only minor modifications in order to
provide “negative” equivalents of these variables, called Negative Tag (NT)
results in the following. The NN output is then simply recomputed using the
above values rather than the original ones. In detail, the NN input NT results
are computed as follows:

CSIP: The CSIP Comb variable is recalculated, using tracks with negative
instead of positive impact parameter significance to obtain the “strong clas-
sifier” numbers of tracks N3s and N2s (see Sect. 6).

JLIP: The Jet Lifetime Probability PJLIP is recomputed using only tracks
with negative rather than positive impact parameter significance.
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SVT: In this case, no additional computation is necessary. Instead of the high-
est (positive) decay length significance the most negative decay length sig-
nificance displaced vertices (for both algorithm versions discussed in Sect. 4)
are used to supply the SVT-related NN variables.

Like the b-jet efficiency, the fake rate and negative tag rate are parametrized as
a function of a jet’s kinematical (ET, |η|) variables. However, in contrast to the
efficiency, it is found (is that on the basis of MC??) that the dependence of
the negative tag rate on jet ET and |η| cannot well be considered to factorize
into a dependence on ET multiplied by a dependence on |η|. Instead, it is
parametrized as a function of jet ET in three regions: 0 < |η| < 1.2 (CC),
1.2 < |η| < 1.8 (ICR) and 1.8 < |η| < 2.4 (EC). In each region, the ET

dependence is parametrized using a quadratic polynomial.

Here should follow some plots: comparison of NT rates and corre-
sponding parametrizations in the three regions (could be two plots,
one for a loose OP and one for a tight OP??), as well as accompa-
nying text (remark on qualitative behaviour?).

9.3 Corrections

The Negative Tag rate is not a perfect approximation of the fake rate. Cor-
rections for the following effects are applied:

• the presence of heavy flavour jets increases the NT rate, primarily due to
tracks that originate from the decay of long-lived particles and that are
(mistakenly) assigned a negative impact parameter sign. As no method is
available to estimate this effect on real data, simulated (generic QCD) events
are used instead. This results in a correction factor Fhf = ε−QCD,light/ε

−
QCD,all,

i.e., the ratio of Negative Tag rates with and without the presence of heavy
flavour jets in these simulated events;

• the V 0 removal algorithm (see Sect. 3.3) which is not fully efficient, so that
some contribution from long-lived particles like KS, Λ etc. remains. Most of
the resulting tracks will correctly be assigned positive impact parameters,
and the NT rate is affected less by their presence than the fake rate. Also
this effect is estimated using simulated events, leading to a correction factor
Fll = ε+

QCD,light/ε
−
QCD,light, i.e., the ratio of the fake rate and the light-flavour

NT rate in simulated events.

Finally, the fake rate is estimated as the NT rate corrected for the above effect:

εlight = ε−data · Fhf · Fll. (18)
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As an illustration, for the JLIP Medium working point (see Sect. 5), the jet
ET dependence of Fhf , Fll, of the negative tag rate ε−data and of the estimated
light quark tagging efficiency εlight are presented in Fig. 21.
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(jet) (GeV)TE
20 40 60 80 100 120

0

0.5

1

1.5

2

2.5

3

neg / lpos = lllSF

neg / allneg = lhfSF
ll SFhfSF

qcd MC

(jet) (GeV)TE
20 40 60 80 100 120

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

QCD skim

EM1TRK

Data negative tag

(jet) (GeV)TE
20 40 60 80 100 120

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

Data

qcd MC

Light estimate

Fig. 21. Jet ET dependence of (top) Fhf and Fll in QCD simulation, (middle) the
negative tag rate in multi-jet data and (bottom) the estimated light quark tagging
efficiency for the JLIP Medium working point. This figure is p14 and should
be replaced with a p17 equivalent. . .

When the jet energy gets higher, the multiplicity of long lived particles and
their average decay length increase, giving larger impact parameters to their
decay products. The charged particles get closer and closer from the jet axis,
leading also to a larger number of wrong sign impact parameter assignments.
These effects contribute to explain why the negative and positive tag rates
increase with ET for light quark jets. The data behaviour is similar to that
predicted by the Monte-Carlo simulation, however the ratio of the data to
Monte-Carlo light quark tagging efficiencies is found to be of about 0.7.

9.4 Systematic Uncertainties

The use of a particular sample (in this case, the combination of QCD and EM
multijet samples) to provide a “universal” estimate of the NT rate needs to be
validated. To this end, the ratio of the NT rates as measured in the separate
QCD and EM samples is determined as a function of the kinematical vari-
ables, and shown in Fig. (some figure) for the (some OP) operating
point(s).
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And here should follow the figure(s).

A corresponding systematic uncertainty is calculated from a constant fit to the
EM/QCD NT rate ratio. Half the difference between the fit value and unity
is taken as the systematic error, or if the ratio is consistent with unity within

the fit uncertainty scaled by
√

χ2/NDF, this scaled fit uncertainty is taken as

the error. The relative uncertainty ranges from 0.1% to 0.7% for the different
operating points and detector regions.

In addition to the difference between the QCD and EM samples, the effect of
removing jets in the vicinity of EM clusters in the QCD sample needs to be
taken into account. The NT rate in the QCD sample with the jets removed is
slightly lower than in the full QCD sample. The effect is small, ranging from
0.2% for the loosest and almost 1% for the tightest operating point, and does
not depend on jet ET. A systematic error is assigned in the same way as that
for the difference between the EM and QCD skims, and ranges from 0.2% to
1.0% for the different operating points and detector regions. Do we need a
plot here, too?

To test the parametrization of the NT rate in the three |η| regions a compari-
son is made between the number of tags found by the tagger and its prediction
from the parametrized NT rate. A systematic uncertainty is again calculated
from a constant fit to the ratio of the actual and predicted number of tags,
following the same procedure as the EM/QCD sample comparison. The sys-
tematic uncertainty ranges from 0.06% to 0.7% for the different operating
points and detector regions.

The Fhf correction factor depends on the assumed b- and c-fractions in the
multi-jet data sample. In turn, these depend on the cross sections for QCD
heavy flavour production, which, until a few years ago, exhibited a factor of
two difference between experimental measurements performed at the Tevatron
collider [13] and corresponding NLO theoretical predictions (see e.g. [14]). Re-
cent developments [15] indicate that the discrepancy is presumably largely
due to an unsatisfactory treatment of fragmentation effects in the experimen-
tal measurements, but a precise comparison is still lacking. To estimate the
uncertainty on Fhf , therefore, the fractions of b(c) jets are varied from their
default values of 4.6% (2.6%) by 20% (relative). Given that the individual
beauty and charm production mechanisms are very similar, these fractions
are varied coherently. We should say here something about the effect
of this source of uncertainty!

The total uncertainty on the fake tag rate is given by adding in quadrature
the systematics contributions (as discussed above) for the appropriate region
to the statistical uncertainty, estimated as the difference between the fake tag
rate central value and the one standard deviation fit curves. The dominant
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contribution is the systematic one, although the statistical error on the fits
has an increasing contribution as the operating point becomes tighter. The
combined relative uncertainty ranges from 3.7% (for the loosest operating
point) to 9.2% (for the tightest operating point) in the CC region, from 3.0%
to 9.5% in the ICR region, and from 2.0% to 5.6% in the EC region. To be
added here: text introducing Table 8.

Table 8
Relative systematics on the mistag rates, for all JLIP working points. NB: obso-
lete, to be replaced by a p17 equivalent

JLIP cut < 0.1% < 0.3% < 0.5% < 1.0% < 2.0% < 4.0%

QCD/EM1TRK ±5.9% ±5.1% ±3.6% ±2.6% ±2.2% ±1.7%

factorization ±2.2% ±1.5% ±2.1% ±1.0% ±1.1% ±0.8%

c-rate ±2.3% ±2.2% ±2.1% ±1.9% ±1.5% ±1.2%

b-rate ±7.5% ±5.5% ±4.6% ±3.5% ±2.5% ±1.7%

Total syst. ±11.6% ±9.4% ±7.9% ±6.1% ±4.7% ±3.5%

10 Performance of the NN tagger (b-Efficiency Measurement)

The Run II data performance of the NN and JLIP taggers as measured on data
including full statistical and systematic errors on the measurement is shown
in Fig. 22 for all jets and also for jets with η < 0.8 and ET > 30 GeV. The NN
tagger demonstrates considerable improvement over the JLIP tagger, which
is the most-used tagger before the NN tagger is developed, for all operating
points.
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Fig. 22. Performance profile of NN and JLIP taggers on the µ+jets and multi-jet
samples. The top plot is for all jets and the bottom plot for jets with η < 0.8 and
ET > 30 GeV. The error on the plots represents the total uncertainty, statistical
and systematic, on the performance measurements. The NN tagger demonstrates
large performance gains over the JLIP tagger, with increases in efficiency of up to
50% for a fixed fake rate. Fake rates are typically reduced to between a quarter and
a third of their value for a fixed signal efficiency.
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[5] R. Frühwirth, Application of Kalman filtering to track and vertex fitting, Nucl.
Instrum. Meth. A262 (1987) 444–450.

[6] P. Hough, Method and Means for Recognizing Complex Patterns, U.S. Patent
no. 3,069,654 (1962).

R. Duda, P. Hart, Use of the Hough Transformation to Detect Lines and Curves
in Pictures, Comm. ACM 25 (1972) 449–456.
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